METHYL ACETATE

PRODUCT IDENTIFICAT	ION					
CAS NO.	79-20-9					
EINECS NO.	201-185-2) q					
FORMULA	CH3COOCH3					
MOL WT.	74.08					
h.s. code	2915.39					
TOXICITY	Oral rat LD50: 5000 mg/kg					
SYNONYMS	Acetic acid, methyl ester; Methyl acetic ester;					
Acetate de Methyle (French); Methyl Ester of Monoacetic Acid; Methyl Ethanoate;					
Methylacetaat (Dutch	n); Methylacetat (German); Methylester Kiseliny Octove (Czech); Metile					
(Acetato Di) (Italian);	Octan Metylu (Polish);					
RAW MATERIALS						
PHYSICAL AND CHEMI	CAL PROPERTIES					
	-73 C 57 58 C					
SPECIFIC CRAVITY	0 93					
SOLUBILITY IN WATER	250 g/l					
рН	200 9/1					
VAPOR DENSITY	2.55					
AUTOIGNITION	454 C					
NFPA RATINGS	Health: 1; Flammability: 3; Reactivity: 0					
REFRACTIVE INDEX						
FLASH POINT	< 55 C					
STABILITY	Stable under normal conditions					
APPLICATIONS						
Acetate is the ester th	at an organic group replaces a hydrogen atom in -OH group of acetic acid					
through reaction (typi	cally condensation) with alcohols. Condensation is the reaction in which two					
molecules having -OH	groups are joined with eliminating a water molecule from their -OH					
groups. They are produ	Jced by esterification reaction from acetic acid and the corresponding					
alconol in the presence	te aleehel and agetic acid in the processo of strong bases or strong acid					
be frydrolyzed back into alconol and acenc acid in the presence of shong bases of shong acid, according to the term acetate is also for the salt that one or more of the						
bydrogen atoms of acetic acid are replaced by one or more cations of the base, resulting in a						
compound containing	a the negative organic ion of CH2COO- Lower acetate is a non-polar to weak					
polar aprotic solvent v	which have some solubility portion in water. Its miscibility with water aets					
higher at elevated ter	mperature. Higher acetates have a low solubility in water and used as					
extraction solvents for	fine chemicals particularly for certain antibiotics. Organic acetates are good					
solvents for a broad ro	ange of resins as they are miscible with almost all common organic liquids.					
Due to their powerful :	solvency, high volatility and mild odor, acetates are widely used as solvents					
for paints, coatings, a	dhesives, cellulose, plastics, fats, wood stains. Additionally ether acetates					
series are also widely u	used as solvents. This surfactant-like structure provides the compatibility					
between water and c	number of organic solvents, and the ability to couple unlike phases. The					
main products include	ethyleneglycol monoethyl ether acetate, ethyleneglycol monobutyl ether					
acetate, and propyleneglycol monomethyl ether acetate. Aromatic acetates such as benzyl						

acetate are also useful solvent. Benzyl acetate has jasmine like odor. Isoamyl acetate has a similar

smell to both banana and pear. Acetates have characteristic fruity odor. They are used as component of perfumes and flavorings. They are used as chemical intermediate to manufacture pharmaceuticals, synthetic flavorings, cleaners, and other organic compounds.

Acetate	FORMULA	CAS RN	B.P C			
Methyl acetate	CH ₃ COOCH ₃	79-20-9	57 - 58			
Ethyl acetate	$CH_3COOC_2H_5$	141-78-6	76.5 - 77.5			
Propyl acetate	CH ₃ COOCH ₂ CH ₂ CH ₃	109-60-4	101 - 102			
Isopropyl acetate	CH ₃ COOCH(CH ₃) ₂	108-21-4	89			
Butyl acetate	CH ₃ COO(CH ₂) ₃ CH ₃	123-86-4	124 - 126			
isobutyl acetate	CH ₃ COOCH ₂ CH(CH ₃) ₂	110-19-0	115 - 117			
Amyl acetate	CH ₃ COO(CH ₂) ₄ CH ₃	628-63-7	149			
Isoamyl acetate	CH ₃ COOCH ₂ CH ₂ CH(CH ₃) ₂	123-92-2	142			
Hexyl acetate	CH ₃ COO(CH ₂) ₅ CH ₃	142-92-7	170 - 172			
Heptyl acetate	CH ₃ COO(CH ₂) ₆ CH ₃	112-06-1	192 - 193			
Octyl acetate	CH ₃ COO(CH ₂) ₇ CH ₃	112-14-1	205 - 211			
Nonanyl acetate	CH ₃ COO(CH ₂) ₈ CH ₃	143-13-5	212			
Decyl acetate	CH ₃ COO(CH ₂) ₉ CH ₃	112-17-4	272			
Undecyl acetate	CH ₃ COO(CH ₂) ₁₀ CH ₃	112-19-6	269 - 271			
Lauryl acetate	CH ₃ COO(CH ₂) ₁₁ CH ₃	112-66-3	265			
Tridecyl acetate	CH ₃ COO(CH ₂) ₁₂ CH ₃	1072-33-9				
Myristyl acetate	CH ₃ COO(CH ₂) ₁₃ CH ₃	638-59-5				
Pentadecyl acetate	CH ₃ COO(CH ₂) ₁₄ CH ₃	629-58-3				
Cetyl acetate	CH ₃ COO(CH ₂) ₁₅ CH ₃	629-70-9				
Heptadecyl acetate	CH ₃ COO(CH ₂) ₁₆ CH ₃	822-20-8				
Stearyl acetate	CH ₃ COO(CH ₂) ₁₇ CH ₃	822-23-1				
Behenyl acetate	CH ₃ COO(CH ₂) ₂₁ CH ₃	822-26-4				
Hexacosyl acetate	C ₂₈ H ₅₆ O ₂	822-32-2				
Triacontyl acetate	$C_{32}H_{64}O_2$	41755-58-2				
Benzyl acetate	CH ₃ COOCH ₂ C ₆ H ₅	140-11-4	213 - 214			
Bornyl acetate	$C_{12}H_{20}O_2$	76-49-3	228 - 231			
Isobornyl acetate	$C_{12}H_{20}O_2$	125-12-2	229 - 233			
Cyclohexyl acetate	CH ₃ COOC ₆ H ₁₁	622-45-7	172 - 173			
SALES SPECIFICATION						
APPEARANCE Cle	ear liquid					
PURITY (GC) 97.	0% , 80.0%					
WAIER 0.1	% max					
	max					
HAZARD CLASS 3 (CLASS 3 (Packing Group: II)					
JN NO12	31					
OTHER INFORMATION						
European Hazard Symbols: F, Risk Phrases: R 11-36-66-67, Safety Phrases: 16-23-29-33						
-EMA No: 2676						
GENERAL DESCRIPTION OF SOLVENT						
orvent is a substance, usually a liquid, that acts as a dissolving agent or that is capable of						
alssolving another substa	nce. In solutions of solids or gases in	a liquia, the liquid solved in liquids: sol	is the solvent. In all			
mer nornogeneous mixi	ores fr.e., ilquius, solius, or guses als	solved in liquids, sol	ilus in solius, unu			

gases in gases), solvent is the component of the greatest amount. The minor proportion substances are called solutes. The solvent offers several functions during a chemical reaction. It solves not only the substance that reacts with another one to produce a new set of substances (reactant) but also the compound that supplies the molecule, ion, or free radical, which is considered as the attacking species in a chemical reaction (reagent). The solvent is conductive to collisions between the reactants and reagents to transform the reactants to new products. The solvent also takes roll of temperature control, either to provide the energy of the colliding particles for speedy reaction and to absorb heat in exothermic reaction. The appropriate solvent should be selected based on the inactivity in the reaction conditions, dissolving the reagents as well as reactants, appropriate boiling point and easy removal at the end of the reaction.

Polarity

The most common solvent is water. Other common solvents which dissolve substances that are insoluble (or nearly insoluble) in water are acetone, alcohol, formic acid, acetic acid, formamide. BTX, carbon disulfide, diemthyl sulfoxide, carbon tetrachloride, chloroform, ether, tetrahydrofuran, furfural, hexane and turpentine. They may be classified as polar and non-polar. Polar solvents, like water, have molecules whose electric charges are unequally distributed, leaving one end of each molecule more positive than the other. Usually polar solvent has O-H bond of which water (HOH), (CH₃OH) and acetic acid (CH₃COOH) are examples. Propanol, butanol, formic acid, formamide are polar solvents. Dipolar solvents which contain a C-O solid bond without O-H bond are acetone $[(CH_3)_2C=O]$, ethyl acetate (CH_3COOCH_2CH_3), methyl ethyl ketone, acetonitrile, N,Ndimethylformamide and diemthyl sulfoxide. Nonpolar solvents, like carbon tetrachloride (CCl4), benzene (C_6H_6), and diethyl ether (CH₃CH₂OCH₂CH₃), have molecules whose electric charges are equally distributed and are not miscible with water. Hexane, tetrahydrofuran and methylene chloride are non-polar solvents. Polar solvents are hydrophilic but non-polar solvents are lipophilic. Polar reactants will dissolve in polar solvents. Non-polar solvents dissolve non-polar compounds best. Oil and water don't mix but separate into two layers. There are three measures of the polarity as 'dipole moment", "dielectric constant" and "miscibility with water". Though low dipole moments and small dielectric constants indicates non-polar solvents, sharp boundaries between polar and nonpolar solvents are not available. The polarity reflects the balance between a polar component (OH) and a non-polar hydrocarbon component, existing in the same molecule. If hydrocarbon character increases relatively, the polarity decreases. On an operational basis, solvents that are miscible with water are polar.

Polar Protic and Dipolar Aprotic

Protic refers to a hydrogen atom attached to an electronegative atom. Protic solvents can donate an H+ (proton) since they contain dissociable H+, such as hydrogen attached to oxygen as in a hydroxyl group, nitrogen as in a amine group. Examples are water, methanol, ethanol, formic acid, hydrogen fluoride and ammonia. Aprotic solvents don't has O-H bond but a C=O bond typically. Examples are acetone [(CH₃)₂C=O] and ethyl acetate (CH₃COOCH₂CH₃). Polar protic solvents are useful in S_N1 reaction, while polar aprotic solvents are S_N2 reaction.

Solvents	Boiling point C	Dipole Moment	Dielectric Constant	Density (g/ml)		
Polar Protic						
Water	100	1.85	80	0.998		
Methanol	68	1.70	33	0.791		
Ethanol	78	1.69	24.3	0.789		

n-Propanol	97	1.68	20.1	0.803			
n-Butanol	118	1.66	17.8	0.810			
Formic acid	100	1.41	58	1.21			
Acetic acid	118	1.74	6.15	1.049			
Formamide	210	3.73	109	1.134			
Polar Aprotic							
Acetone	56	2.88	20.7	0.786			
Tetrahydrofuran	66	1.63	7.52	0.886			
Methyl ethyl ketone	80	2.78	18.5	0.805			
Ethyl acetate	78	1.78	6.02	0.894			
Acetonitrile	81	3.92	36.6	0.786			
N,N-Dimethylformamide	153	3.82	38.3	0.944			
Diemthyl sulfoxide	189	3.96	47.2	1.092			
Non-Polar							
Hexane	69	-	2.02	0.655			
Benzene	80	0	2.28	0.879			
Diethyl ether	35	1.15	4.34	0.713			
Methylene chloride	40	1.60	9.08	1.326			
Carbon tetrachloride	76	0	2.24	1.594			